Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly.

نویسندگان

  • Maegen A Ackermann
  • Li-Yen R Hu
  • Amber L Bowman
  • Robert J Bloch
  • Aikaterini Kontrogianni-Konstantopoulos
چکیده

Obscurin is a multidomain protein composed of adhesion and signaling domains that plays key roles in the organization of contractile and membrane structures in striated muscles. Overexpression of the second immunoglobulin domain of obscurin (Ig2) in developing myotubes inhibits the assembly of A- and M-bands, but not Z-disks or I-bands. This effect is mediated by the direct interaction of the Ig2 domain of obscurin with a novel isoform of myosin binding protein-C slow (MyBP-C slow), corresponding to variant-1. Variant-1 contains all the structural motifs present in the known forms of MyBP-C slow, but it has a unique COOH terminus. Quantitative reverse transcription-polymerase chain reaction indicated that MyBP-C slow variant-1 is expressed in skeletal muscles both during development and at maturity. Immunolabeling of skeletal myofibers with antibodies to the unique COOH terminus of variant-1 demonstrated that, unlike other forms of MyBP-C slow that reside in the C-zones of A-bands, variant-1 preferentially concentrates around M-bands, where it codistributes with obscurin. Overexpression of the Ig2 domain of obscurin or reduction of expression of obscurin inhibited the integration of variant-1 into forming M-bands in skeletal myotubes. Collectively, our experiments identify a new ligand of obscurin at the M-band, MyBP-C slow variant-1 and suggest that their interaction contributes to the assembly of M- and A-bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin Binding Protein-C Slow: An Intricate Subfamily of Proteins

Myosin binding protein C (MyBP-C) consists of a family of thick filament associated proteins. Three isoforms of MyBP-C exist in striated muscles: cardiac, slow skeletal, and fast skeletal. To date, most studies have focused on the cardiac form, due to its direct involvement in the development of hypertrophic cardiomyopathy. Here we focus on the slow skeletal form, discuss past and current liter...

متن کامل

Cardiac myosin binding protein C.

Myosin binding protein C (MyBP-C) is one of a group of myosin binding proteins that are present in the myofibrils of all striated muscle. The protein is found at 43-nm repeats along 7 to 9 transverse lines in a portion of the A band where crossbridges are found (C zone). MyBP-C contains myosin and titin binding sites at the C terminus of the molecule in all 3 of the isoforms (slow skeletal, fas...

متن کامل

Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection

The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signaling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here,...

متن کامل

Structure-function relationships in myosin binding protein-C: taking off the blinders and collaring hypertrophic cardiomyopathy.

Myosin binding protein-C (MyBP-C), a major component of the thick filament, binds to both the myosin (thick) and titin filament systems through defined domains and is believed to make an important contribution to sarcomere structure. Discovered over 27 years ago,1 interest in the protein’s role(s) intensified after familial hypertrophic cardiomyopathy (FHC) was linked to chromosome 11p13-q13, w...

متن کامل

Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2009